
In conformi ty  with the exis tence t h e o r e m  for  impl ic i t  functions, the n e c e s s a r y  condition for  solvabi l i ty  of the 
s y s t e m  (5.6) fo r  h i and T is 

O(O*, 0~, (1) 3, O~ ~, h', h', -c) =/= O, (5.7) 
where  ~0, ~i  a re  sufficiently smooth  functions of the i r  a rgument s .  

Evaluating the de r iva t ives  in (5.7), and utilizing the re la t ionship  

1 ~ 8(~ ! ae--~ + -~ " '  ~ = 0, 

the inequality (5.7) can be wr i t ten  in  the f o r m  

O~U b ~ (OF~,*b) =/=0. Odet[ (pG)z g " -  (pF:na) OF~F~ I (5.8) 

Compar ing  (5.8) and (4.4), we find that  the des i r ed  condition is pG ~ pc, i .e . ,  the shock  veloci ty  should not equal 
the propaga t ion  veloci ty  of the cha r ac t e r i s t i c  su r face .  
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T A K I N G  I N T O  A C C O U N T  T H E  S T R U C T U R A L  I N H O M O G E N E I T Y  

O F  A C O M P O S I T E  M A T E R I A L  IN E S T I M A T I N G  A D H E S I V E  S T R E N G T H  

L .  I .  M a n e v i c h  a n d  A .  V .  P a v l e n k o  UDC 539.3:678.5.06 

One o f  the basic  c h a r a c t e r i s t i c s  of a composi te  m a t e r i a l  is i ts  adhesive s t rength .  The exper imenta l  de-  
t e rmina t ion  of this c h a r a c t e r i s t i c  (in the case  of a f ibe r  composi te)  can be based  on a m e a s u r e m e n t  of the load, 
for  which a f iber  is pulled out of the ma t r ix .  

In o rde r  to c o r r e c t l y  calcula te  the adhesive s t rength  f r o m  the r e su l t s  of such t e s t s ,  it is n e c e s s a r y ,  how- 
ever ,  to  solve a complex mechanical  p rob lem of the distr ibution of contact s t r e s s e s  between the f ibe r  and the 
mat r ix .  The use of r igorous  methods fo r  analyzing composi tes  at the consti tuent  component level does not 
p e r m i t  obtaining at the p r e s e n t  t ime  an exact  analyt ic  solution of the cor responding  p rob l em in  the theory  of 
e las t ic i ty .  F o r  this  reason,  the engineering approach  [1-3], in which it is a s sumed  that  the f ibe r s  function only 
under tension, while the m a t r i x  only functions under  shear ,  is widely used.  Evidently,  with this  method,  it is 
imposs ible  to take into account the poss ib le  s ingular i ty  of the contact  s t r e s s e s  at  locat ions where the f ibe r  and 
the m a t r i x  join on the f ree  boundary.  In addition, in using a s impl i f ied  model ,  there  a r i s e s  the natural  p rob -  
l em of the l imi t s  of applicabil i ty of the cor responding  solut ions even outside the regions of concentra ted  s t r e s s e s .  

A detai led represen ta t ion  of the s t r e s s e d  s ta te  can be obtained by the f in i t e -e lement  method.  However,  in 
o rde r  to apply numer ica l  methods efficiently,  p r e l i m i n a r y  analytic solut ions,  which c o r r e c t l y  re f lec t  the basic  
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145, May-Jtme, 1982. Original article submitted March 20, 1981. 

434 0021-8944/82/2303-0434507.50 �9 1982 Plenum Publishing Corpora t ion  



characteristics of the distribution of stresses in the composite material, are also important. This paper is 
concerned with constructing such analytic solutions taking into account the s t ructura l  inhomogeneities of the 
mater ia l .  F i rs t ,  we est imate  the l imits of applicability of the discrete  model of the composite mentioned 
above and representa t ions  are obtained for  the contact s t r e s se s ,  valid everywhere,  except in the vicinity of 
singular points. These representat ions ,  taken together  withthe singular  solutions constructed atthe second stage, 
give an approximate solution te the  problem that is equally useful in the entire contact region. 

1. In o rder  to e stablish the l imits of applicability of the discrete  model or  a composite material ,  we shall 
examine the two-dimensional  problem of pulling a f iber  out of a matr ix ,  shaped like a halfstrip (0_: x < ~, 
- b  _< y __ b), whose finite boundaries (y = • are clamped. The fiber, t rea ted  as a one-dimensional elastic rod, 
is si tuated at the center  of the ha l f - s t r ip  and coincides with the Ox axis. A scheme describing line contact is 
used. The matr ix,  general ly  speaking, is assumed to be orthotropic and the principle direct ions of elastici ty 
coincide with the Car tes ian x and y axes. 

In this formulation,  the problem reduces  to integrating the equations of equilibrium of the mat r ix  

Blux~  + G%g + (v2B1 + C)v~g = O, 

Gv~x + B~vu~ + (r iB2 + G)u~ u = 0 

with the following boundary conditions: 

an = ~2 = 0  (z = O ) , u  = U , v = O  (g = O ) , u  = v = 0 ( g =  +b). 

At infinity, all functions vanish. Here u and v are the components of the displacement vector  of the matrix;  
BIB2, tension and compress ion  moduli of the matrix;  G, shear  modulus; al l ,  ~12, axial and tangential s t r e s se s  
in the matrix;  u 1, u2, Poisson coefficients;  and the indices x and y indicate differentiation with respec t  to the 
corresponding coordinates .  

The displacements U(x) of the points of the fiber sat isfy the equation 

E F U x x  = Po6(X) ~ 2~(x), (1.1) 

where EF is the tensile s trength of the fiber; 5 (x), Dirac  function; P0, force applied to the f iber at the bound- 
ary  point x = 0; 7(x), contact s t r e ss  between the f iber  and the matr ix.  Since v = 0 (Vx = 0) a t y  = 0, 

x(x) = Gu u ly=o. (1.2) 

In o rder  to study the problem formulated above, which cannot be solved exactly, we shall apply the asymp-  
totic method [4-6]. Since the contact s t r e ss  (1.2) is defined only in t e r m s  of the function u, in accordance with 
the separat ion of the s t r e s s - s t r a i n  state of the matr ix  [4-6], the solution (in the f i r s t  approximation) reduces 
to integrating Eq. (1.1), tatting into account (1.2) and the approximate equation of equilibrium of the matr ix 

o):uxx -+" uy u = 0 (o~ = B t /V) ,  (1.3) 

to which the following boundary conditions correspond: 

u~ = 0 (x = 0), Gu u = T(x) (y -= 0), u = 0 (g = + b ) .  (1.4) 

At infinity, all functions vanish. 

Applying the cosine Fourier transformation with respect to the coordinate x to Eq. (1.3), solving the or- 
dinary differential equation obtained taking into account the transformed equalities (i.i), (1.2), and (1.4), and 
finding the inverse transformation, we obtain 

2P~ I' ch (o~gs) ~ cth (o)bs) sh (o)ys) 
U(X, g) = - -  ~Et7 J S - ' ~ - ~ - - d t ~  cosxsas ,  

o (i . 5 )  

cos zs ds,  g = 
T(x)~ .~ d sth((~bs)-~-g EF" 

o 

For  small  s, which corresponds  to large values of the coordinate x, tanh (cobs) ~ wbs, while the s t r e ss  
(x) takes the fo rm 

2 
Pog, f cos xs Pog* e -g-x, ( 1 . 6 )  (z)  = ~ J ~  ds  = g~ g 2a 

o~ - K ~ "  
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The contact s t r e ss  (1.6) corresponds  to the solution of the problem assuming that the matr ix  functions only un- 
der  shear .  

For  large s, which corresponds  to small  values of the coordinate x, tanh(~bs) ~ 1, while the s t r e ss  r(x) 
f rom (1.5) is writ ten in the fo rm 

(x) = p~ ~ cos xs ds __ r ~  (cos gx ci gx 'k sin gx si gx), (1.7) 
0 

where si and ci are  the sine and cosine in tegra ls .  The distribution of contact s t r e s se s ,  defined by Eq. (1.7), 
cor responds  to the solution of the problem of pulling a f iber  out of a semiinfinite matr ix  [5] and, in addition, 
r(x) has ,  evidently, a logari thmic singulari ty at the point x = 0. 

Thus, the solution obtained based on the simplified analysis ,  when it is assumed that the f ibers function 
only under tension, while the matr ix  functions only under shear ,  is valid only for  sufficiently large values of 
the coordinate x. 

Analogous resul ts  can be obtained by examining the problem of pulling a fiber,  si tuated along the x axis, 
out of a rec tangular  matr ix  (0 __ x <_ h, - b  _< y _ b) fixed along the edges y = ~b, when e l l  = ela = 0 at x = 0 
and h. In par t icular ,  the contact s t r e s s  between the f iber  and the matr ix  is defined by the equation 

o o  

~(x) P0g ~ ~o~(.~h ~) (1.8) 

tf the matr ix  functions only under shear ,  then 

(x) = P~ oh [g. (h -- z)] 
2 sh(g,h) " (1.9) 

For  h -~ 0o, the solutions (1.8) and (1.9) go over  into (1.5) and (1.6). 

In the preceding examples,  i t  was assumed that in a f ibrous composite mater ia l ,  the f ibers  that are  ad-  
jacent to the ones that are  puiied out are fixed. The effect of these f ibers ,  as shown above, is important  only 
for  sufficiently large values of the coordinate x, where the solution obtained based on the simplified analysis 
is valid; for  this reason,  the  real  s t ructure  of the composite can be taken into account quite s imply.  The c o r -  
responding calculations show that the approximation of fixed neighboring f ibers  is completely acceptable.  

The region of values of the p a r a m e t e r  x (and coordinate x), in which the d iscre te  model of the composite 
is applicable, is es t imated as follows: s ~ g .  (x ~ g,1). 

The discrete  model of the composite mater ia l  is not applicable in the  zone next to the edge of the s t r ip  
(x < g,1). Here,  it is neces sa ry  to  use solutions (1.5) and (1.8), obtained by an asymptotic method and valid 
everywhere ,  except in the direct  vicinity of the f i b e r - m a t r i x  joint at the free boundary. In this vicinity, a spe -  
cial solution must  be constructed based on the exact equations of the theory of elast ici ty.  If the rod model of 
a f iber  is retained in this case,  then we a r r ive  at a correc t ion to the logari thmic singulari ty of the contact 
s t r e s s e s  due to the power- law factor ,  which depends on the Poisson coefficients u i, v 2 [7]. This fac tor  equals 
1 only for  u 1 = v 2 = 0 and solutions (1.5) and (1.8) are  valid in the entire contact  region. If, on the other hand, 
in the region examined, the s t r e s s e d  state of the f ibers  can be descr ibed by the equations of the two-dimen-  
sional s t r e s sed  state, then the singulari ty of the contact s t r e s se s  (which does not depend on the t r ansve r se  
dimension of the fiber) is determined by the method of t r ans fe r r ing  the load to the f iber (s t resses  or d is -  
placements are given). When the s t r e s s e s  are  given, the charac te r i s t ic  value k ,  determining the exponent 
of the singularity,  of the contact s t r e s ses  [r(x) = AxX] in the vicinity of the f i b e r - m a t r i x  joint at a f ree  
boundary, is the root of the following charac te r i s t i c  equation" 

D~(i -k~) ' -k . (2D1D2--4D~--D~- l -6D1D~cos~)( l -k~)  ~ +D~(i-kc~ sin2~n~O, (1.10) 

which is obtained by using a group approach [8]. Here,  D 1 = k(~ 2 - 1) - (~l - 1); D 2 = 4(1 - tO; D 3 = k(~ 2 + 1) - 
(~l + 1); k =G1/G2; ~i  = (3 - v i ) / (1  + ui); and, the indices 1 and 2 correspond to the f iber and the matr ix.  

The roots of Eq. (1.10), lying in the region - 1  < k < 0, do not depend significantly on changes in the pa-  
r ame te r s  and fall into the interval -0 .419 _< k -- -0 .394  (with u I = u 2 = 0.3, X =-0 .412) .  
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2. We shall now examine an analogous axisymmetrical problem. Assume that a fiber with a circular 
transverse cross section is pulled out of a matrix shaped like a semiinfinite cylinder (a <__ r <__ b, 0 <__ z < co), 
whose lateral surface (r = b) is fixed. The central line of the fiber is perpendicular to the plane z = 0 and 
coincides with the Oz axis. It is necessary to determine the law governing the distribution of the contact 

stresses between the fiber and the matrix, when an axial load with a resulting P0 oriented along the fiber axis 
acts in the end section (z = 0) of the fiber. 

In formulating spatial contact problems for bodies with elastic inclusions with a small transverse cross 
section, the model of a one-dimensional elastic rod together with the line contact model is not directly applic- 
able [9]. For this reason, retaining for the fiber the model of an elastic rod, weassume that it is in contact 
with the matrix along the cylindrical surface. 

In this formulation and in accordance with the separation of the stress-strain state of the matrix [I0, Ii], 
the solution (in the first approximation) reduces to integrating the equation for the fiber 

d2w/dz  2 ----- (P0f(z) - -  "~(z))/EF (2.1) 

and an approx ima te  equat ion of equ i l ib r ium of the m a t r i x  

O~wlOr 2 + (l/r)Ow/Or + r 2 = 0, (2.2) 

to  which the fol lowing boundary  condi t ions  c o r r e s p o n d :  

Wz = 0  (z = 0 ) ,  w =  w l ( r  = a ) ,  w = O ( r =  b), (2.3) 

and all funct ions  van ish  at inf~mity. Here  E and F a r e  the  modulus  of e l a s t i c i ty  of the m a t e r i a l  and the a r e a  of 
the t r a n s v e r s e  c r o s s  sec t ion  of the f iber ;  w(w l) a r e  the n o r m a l  (along the z axis) d i s p l a c e m e n t s  of the m a t r i x  
(fiber); z(z) = 2~aGWrI  r =a is the contac t  s t r e s s  p e r  unit  length of the f ibe r ,  which m u s t  be de te rmined .  

Af te r  applying the F o u r i e r  cos ine  t r a n s f o r m a t i o n  with r e s p e c t  to the z coord ina te  to  the equat ions  and 
boundary  condi t ions ,  so lving the o r d i n a r y  d i f fe ren t ia l  equat ion obta ined  f r o m  (2.2), and ca lcu la t ing  the i n v e r s e  
t r a n s f o r m s ,  we find 

---- :t j~1 (O+gz  ds, 
0 

2gaC~ 2ao~ I o (a)bs) K o (mas) - -  I o ((oas) K o ((abs) . 
w h e r e  g~ = ~ = -K~-; [(s)  = ~ - ~ - ~ ) ~ x ( - - ~ 7 ) ~ ~ ,  Ik(x) ,  Kk(x)  (k = 0, i) 

tions. 

(2.4) 

a r e  modi f ied  Bes se l  rune-  

F o r  l a rge  va lues  of the p a r a m e t e r  s,  which c o r r e s p o n d s  to  sma l l  va lues  of the z coord ina te ,  f(s) ~ 1, 
while the contac t  s t r e s s  T(z) is e x p r e s s e d  as fo l lows:  

c o  

~7 (z) = 2Pogl~ j ~ ~ c ~  zs as~ = 2P~ gl (cos gl z ci gxz + sin glz  si glz). 

0 

(2.5) 

The d i s t r ibu t ion  of the con tac t  s t r e s s e s  (2.5) c o r r e s p o n d s  to  the so lu t ion  of the p r o b l e m  of pulling a f i be r  out 
of a semi inf in i te  ma t r ix ;  as  in the two d imens iona l  p r o b l e m ,  we have a l oga r i t hmic  s ingu la r i t y  at z = 0. 

F o r  s m a l l  s,  which  c o r r e s p o n d s  to l a rge  va lues  of the z coord ina te ,  

/(s) ~.  [i + • ]-lo)as In (b/a), • ~ ((o)as)2/2) In (2/7o~bs), 

7 is E u l e r ' s  cons tant .  F o r  sma l l  s, it is poss ib l e  to neg lec t  the funct ion x(s)  c o m p a r e d  to  unity,  when 

/(s) ~ o)as in (b/a). 

In th is  case ,  the s t r e s s  (2.4) t akes  the  f o r m  
�9 n co 

2POgl .  ~ c o s  zs . 
�9 (z) = -  3 o ~ a S = P o g l ,  e - ~ l * Z , g ~ , - -  

g l  2 G  

0~aln b Ea2 in ab-- 

Equations (1.6) and (2.6) are identical, but the latter does not correspond to the distribution of contact 
stresses in a discrete composite material. 

(2.6) 
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Thus, in the spatial problem, the solution obtained with the simplified approach, when it is assumed that 
the f iber  functions only under tension while the mat r ix  functions only under shear ,  does not correspond to the 
asymptotic behavior of the exact solution. For  this reason,  such a simplified approach can be viewed as jus t i -  
fied only in the two-dimensional  problem and, in addition, its range of applicability is limited. 

Analogous results  were obtained in examining the ax isymmetr ica l  problem of pulling a f iber out of a ma -  
t r ix  shaped like a finite cylinder (a _< r <_ b, 0 _< z ~ h), whose la teral  surface (r =b) is fixed. 

As in the two-dimensional  case, the fo rm of the s ingular  behavior of the contact s t r e s s e s  in the vicinity 
of the s ingular  line r = a ,  z = 0, is establ ished based on the complete equations of the theory of elast ici ty.  In 
this case,  the charac ter i s t ic  values ~ of the s ingular  solution turn  out to be the same as in the two- and th ree -  
dimensional problems,  if the boundary conditions at the boundary of the f iber  are identical. 

3. The solutions obtained above for  the contact  s t r e s s e s ,  which are each valid in their  own zone of the 
contact region, must  t r ans fo rm smoothly into one another.  The relation between the solutions of two neighbor-  
Lug zones can be establ ished as follows. In one of the zones,  the solution is known completely.  In the solution 
of the neighboring zone, a coefficient is unknown. The requi rement  that the solutions and thei r  derivatives co-  
incide permi ts  finding the unknown coefficient and the coordinate of the point at which these two solutions are  
joined. 

As an example, we shall join the solutions (1.8), which includes solutions (1.7) and (1.9), with the singular 
solution near  the f i b e r - m a t r i x  joint at a free boundary (x = 0), when the s t r e s sed  state of the f iber  in the given 
neighborhood is descr ibed by the equations of the two-dimensional  s t r e s sed  state.  In this case,  

"rl(~) = A I ~ ,  %(~) = (2Po/nb)g~p(~) , 

o o  

cos (n~13=1~) . x h [2ab 
where ~(~) = z_~ n t h ( 2 ~ - ~  _ 1 , ~ = T; ~ = "b; g2 : ~p-; o = 2. Requiring that the conditions r 1 = r 2, 

n=l 2 

r~ = r [  be satisfied, we obtain 

2P o �9 A~ ---- %- A~, A: = g ~ : ~  (~,). 

Here ~. (the point at which the solutions are  joined) is the root  of the equation 

x ~ ( ~ )  - ~ ' ( ~ )  = 0.  

In par t icu lar ,  with ?~ = - 0 . 4  and fi = 1, for  the v a l u e s g  2 = 0.01, 0.1, 0.3, 0.5, 0.8, and 1.0, we find the fol-  
lowing values of ~, and A~, respect ively:  ~ .  = 0.026, 0.024, 0.02, 0.019, 0.017, 0.015; A~ = 0.006, 0.056, 
0.157, 0.248, 0.368, 0.441. Fo r  /3 = 2 and the same values of ?~ and g2, we have ~, = 0.053, 0.045, 0.037, 0.029, 
0.022, 0.021; A~ = 0.008, 0.072, 0.191, 0.291, 0.418, 0.493. 

The solutions are  joined in an analogous manner  in the case of axisymmetr iea l  problems.  
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STABILITY OF PLASTIC ELONGATION OF A BIMETALLIC SHEET 

S. S. Oding UDC 539.214:539.374 

The extension of a sheet  is l imited by the magnitude of the cr i t ical  s t ra in  at which local thinning of the 
mater ia l  begins with the format ion of a neck. We solve the problem of the stabil i ty of plastic extension of a bi-  
metall ic sheet  under conditions of plane s t ra in .  The solution is constructed by using the theory of finite de-  
format ions of a r ig id-plas t ic  mater ia l .  

1. We consider  the plast ic extension of a bimetal l ic  sheet  with a given law of variat ion of length. The 
loss of stabili ty in this case can be represented  as a p rocess  of continuous change of equilibrium shapes. 
Therefore  the cr i t ical  s t ra in  at which a neck is produced can be determined by the bifurcation method. 

Since the loss of stabili ty of deformation under considerat ion occurs  during the plast ic deformations de-  
veloped, we neglect e last ic  deformations and assume a model of a r ig id-plas t ic  mater ia ls  with isotropic ha rd -  
ening. 

The flow curves of the materials of the layers of the bimetallic sheet a (t) = ~{e i) (e e) and a~ ) = a(e 2) {e e) 
are assumed given. Here superscripts 1 and 2 denote quantities referring to the separate layers of the sheet; 
a e = [(3/2)sijsij] I/2, stress intensity; si] = crij -a6 ij, components of the stress deviator; aij, components of 
the stress tensor; a = (I/3)(~mn6mn, hydrostatic pressure; and ee, cumulative plastic deformation. 

The problem is to determine the strain ee. beyond which deformation occurs with the formation of a neck. 

As the equations of state we take the equations of the deformation theory of plasticity, written for finite 
s t ra ins  in the fo rm 

2 ae 
sii = T ~ eij, (1.1) 

where the eij are  the logari thmic s t ra ins ;  e e = [(2/3)eijeij]l /2 is the intensity of the logari thmic s t ra ins .  Log- 
ar i thmic s t ra ins  are used in Eqs.  {1.1), since for  large deformations the condition of incompressibi l i ty  of the 
mater ia l  eij6ij = 0 is compatible with Eqs.  (1.1) only for  logari thmic s t ra ins .  

Bifurcation in a state A means that in addition to unperturbed deformation in state A, per turbed deforma-  
tion in a state B infinitely close to it is possible.  

We introduce a Cartesian coordinate sys t em in state A in such a way that for  the same par t ic les  the co-  
t ordinates x i in state B and the coordinate x i in state A are related by the equation 

z t  = x~ § u~, ( 1 . 2 )  

where u i is an additional infinitesimal displacement  of a par t ic le .  Then 

dx ~, = (8~ + ut.~) dz~. (1.3) 

F rom now on subscr ip ts  after  a comma denote differentiation with respec t  to the corresponding coo r -  
dinate x i. 

Retaining only f i r s t  o rde r  infinitesimals in the determinant  of sys tem (1.3), we obtain the incompres -  
sibility condition of the medium in the fo rm 
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