In conformity with the existence theorem for implicit functions, the necessary condition for solvablhty of the
system (5.6) for hi and 7 is

D, @2, @3, OY)/A(h, k2, B3, 1) %= 0, (5.7)
where 9, &1 are sufficiently smooth functions of their arguments.

Evaluating the derivatives in (5.7), and utilizing the relationship

a® . 1, apf
w Tl =0
the inequality (5.7) can be writtenin the form
. ,
6 det| (0G)* gy; — (P mna) 61"‘ Fj (panb) 5&0 {5.8)

Comparing (5.8) and (4.4), we find that the desired condition is pG # pc, i.e., the shock velocity should not equal
the propagation velocity of the characteristic surface.
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TAKING INTO ACCOUNT THE STRUCTURAL INHOMOGENEITY
OF A COMPOSITE MATERIAL IN ESTIMATING ADHESIVE STRENGTH

L. I. Manevich and A. V. Pavlenko UDC 539.3:678.5.06

One of the basic characteristics of a composite material is its adhesive strength. The experimental de-
termination of this characteristic (in the case of a fiber composite) can be based on a measurement of the load,
for which a fiber is pulled out of the matrix.

In order to correctly calculate the adhesive strength from the results of such tests, it is necessary, how-
ever, to solve a complex mechanical problem of the distribution of contact stresses between the fiber and the
matrix. The use of rigorous methods for analyzing composites at the constituent component level does not
permit obtaining at the present fime an exact analytic solution of the corresponding problem in the theory of
elasticity. For this reason, the engineering approach [1-3], in which it is assumed that the fibers function only
under tension, while the matrix only functions under shear, is widely used. Evidently, with this method, it is
impossible to take into account the possible singularity of the contact stresses at locations where the fiber and
the mairix join on the free boundary. In addition, in using a simplified model, there arises the natural prob-
lem of the limits of applicability of the corresponding solutions even outside the regions of concentrated stresses.

A detailed representation of the stressed state can be obtained by the finite-element method. However, in
order to apply numerical methods efficiently, preliminary analytic solutions, which correctly reflect the basic

Dunepropetrovsk. Translated from Zhurnal Prikladnoi Mekhaniki Tekhnicheskoi Fiziki, No. 3, pp. 140~
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characteristics of the distribution of stresses in the composite material, are also important. This paper is
concerned with constructing such analytic solutions taking into account the structural inhomogeneities of the
material. First, we estimate the limits of applicability of the discrete model of the composite mentioned
above and representations are obtained for the contact stresses, valid everywhere, except in the vicinity of
singular points. These representations, taken together withthe singular solutions constructed atthe second stage,
give an approximate solution tothe problem that is equally useful in the entire contact region.

1. In order to e stablish the limits of applicability of the discrete model or a composite material, we shall
examine the two-dimensional problem of pulling a fiber out of a matrix, shaped like a halfstrip (0= x < «,
~b =y = b), whose finite boundaries (y = +b) are clamped. The fiber, treated as a one~dimensional elastic rod,
is situated at the center of the half-strip and coincides with the Ox axis. A scheme describing line contact is
used. The matrix, generally speaking, is assumed to be orthotropic and the principle directions of elasticity
coincide with the Cartesian x and y axes.

In this formulation, the problem reduces to integrating the equations of equilibrium of the matrix

Bluxx -+ Cuyy -+ (V231 -+ G)ny = 01
GUex + Byvyy + (viBy + Guyy = 0

- with the following boundary conditions:
0y =0p=0=0,u=U,v=0F=0),u=0v=0(y=Lb).

At infinity, all functions vanish. Here u and v are the components of the displacement vector of the matrix;
BB, tension and compression moduli of the matrix; G, shear modulus; ¢4, 0y, axial and tangential stresses
in the matrix; vy, vy, Poisson coefficients; and the indices x and y indicate differentiation with respect to the
corresponding coordinates.

The displacements U(x) of the points of the fiber satisfy the equation
EFU ., = Pyd(z) — 21(x), (1.1)

where EF is the tensile strength of the fiber; & (x), Dirac function; P, force applied to the fiber at the bound-
ary point x = 0; 7(x), contact stress between the fiber and the matrix. Since v =0 (vx =0) aty =0,

ox) = Guyly=- , (1.2)

In order to study the problem formulated above, which cannot be solved exactly, we shall apply the asymp-
totic method [4-6]. Since the contact stress (1.2) is defined only in terms of the function u, in accordance with
the separation of the stress—strain state of the matrix [4-6], the solution (in the first approximation) reduces
to integrating Eq. (1.1), taking into account (1.2) and the approximate equation of equilibrium of the matrix

Oy + 2y = 0 (0? = B/G), (1.3)
to which the following boundary conditions correspond:
ur =0 (z=0), Guy, = 1(z) (y =0), u =0 (y = +b). (1.4)
At infinity, all functions vanish.

Applying the cosine Fourier transformation with respect to the coordinate x to Eq. (1.3), solving the or-
dinary differential equation obtained taking into account the transformed equalities (1.1), (1.2), and (1.4), and
finding the inverse transformation, we obtain

_ 2P,  ch (wys) — cth {wbs) sh (wys)
u(z y) = — 2zF 3 S Fgoth(obs)]  CoS&sds,
o (1.5)

=)

Pg 26,

Yo coS 5 _ 2Ge

T(7) = [ j‘sth(mbs)-{—gds’g_ EF”
0

For small s, which corresponds to large values of the coordinate x, tanh (wbs) ~ wbs, while the stress
7 (x) takes the form

Pt s cOS z§ Pg. _ 5 26
T(e) =3 j ds = =557, g) = - = 5 (1.6)
0
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The contact stress (1.6) corresponds to the solution of the problem assuming that the matrix functions only un-
der shear. :

For large s, which corresponds to small values of the coordinate x, tanh{whs) ~ 1, while the stress 7(x)
from (1.5) is written in the form

Pg L P
t{z) = —;’g—j:‘i? ds = — —%:’1 (cos gz ci gz - sin gz si gz), (1.7)
, b

where si and ci are the sine and cosine integrals. The distribution of contact stresses, defined by Eq. (1.7),
corresponds to the solution of the problem of pulling a fiber out of a semiinfinite matrix [5] and, in addition,
7(x) has, evidently, a logarithmic singularity at the point x = 0.

Thus, the solution obtained based on the simplified analysis, when it is assumed that the fibers function
only under tension, while the matrix functions only under shear, is valid only for sufficiently large values of
the coordinate x.

Analogous results can be obtained by examining the problem of pulling a fiber, situated along the x axis,
out of a rectangular matrix (0 =x <h, —b =y <b) fixed along the edges y = +b, when oy =0y, =0atx =0
and h. In particular, the contact stress between the fiber and the matrix is defined by the equation

P g % cos (nnxh_l)
o(z) = D8 N : . 1.8
(@) a sy th (orrbh 1) - ghr 48

If the matrix functions only under shear, then

_ PiBrchlgs (b — )]
17(3:) = 02 "‘W- (1-9)

For h — =, the solutions (1.8) and (1.9) go over into (1.5) and (1.6).

In the preceding examples, it was assumed that in a fibrous composite material, the fibers that are ad-
jacent to the ones thaf are pulled out are fixed. The effect of these fibers, as shown above, is important only
for sufficiently large values of the coordinate x, where the solution obtained based on the simplified analysis
is valid; for this reason, the real structure of the composite can be taken into account quite simply. The cor-
responding calculations show that the approximation of fixed neighboring fibers is completely acceptable.

The region of values of the parameter x (and coordinate x), in which the discrete model of the composgite
is applicable, is estimated as follows: s ¢ g, & s g3).

The discrete model of the composite material is not applicable inthe zone next to the edge of the strip
x < g;i). Here, it is necessary to use solutions (1.5) and (1.8), obtained by an asymptotic method and valid
everywhere, except in the direct vicinity of the fiber—matrix joint at the free boundary. In this vicinity, a spe-
cial solution must be constructed based on the exact equations of the theory of elasticity. If the rod model of
a fiber is retained in this case, then we arrive at a correction to the logarithmic singularity of the contact
stresses due to the power-law factor, which depends on the Poisson coefficients vy, v, [7]. This factor equals
1 only for vy = v, =0 and solutions (1.5) and (1.8) are valid in the entire contact region. If, on the other hand,
in the region examined, the stressed state of the fibers can be described by the equations of the two-dimen-
sional stressed stafe, then the singularity of the contact stresses (which does not depend on the transverse
dimension of the fiber) is determined by the method of transferring the load to the fiber (stresses or dis-
placements are given), When the stresses are given, the characteristic value A, determining the exponent
of the singularity, of the contact stresses [7(x) = AxA] in the vicinity of the fiber—matrix joint at a free
boundary, is the root of the following characteristic equation:

D} (1 + A)* + (2D,D, — 4D? — D} + 6D, D, cos An) (1 + A)* + D (1 + cosAn)? + DEsin®Ax = 0, (1.10)

~which is obtained by using a group approach [8]. Here, D; = king —1) — (ny —1); Dy = 4(1 — K); D3 =k(n, + 1) —
(tg +1)5 kK =Gy/Gys %y = (83— v1)/ (1 + vy); and, the indices 1 and 2 correspond to the fiber and the matrix.

The roots of Eq. (1.10), lying in the region —1 < A < 0, do not depend significantly on changes in the pa-
rameters and fall into the interval —0.419 = A = —0.394 (with vy = vy =0.3, A ==0.412).
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2. We shall now examine an analogous axisymmetrical problem. Assume that a fiber with a circular
transverse cross section is pulled out of a matrix shaped like a semiinfinite cylinder (¢ = r <b, 0 = z <),
whose lateral surface (r =h) is fixed. The central line of the fiber is perpendicular to the plane z = 0 and
coincides with the Oz axis. It is necessary to determine the law governing the distribution of the confact
stresses between the fiber and the matrix, when an axial load with a resulting P oriented along the fiber axis
acts in the end section (z = 0) of the fiber.

In formulating spatial confact problems for bodies with elastic inclusions with a small transverse cross
section, the model of a one-dimensional elastic rod together with the line contact model is not directly applic-
able [9]. For this reason, retaining for the fiber the model of an elastic rod, we assume that it is in contact
with the matrix along the cylindrical surface.

In this formulation and in accordance with the separation of the stress—strain state of the matrix [10, 111,
the solution (in the first approximation) reduces to integrating the equation for the fiber

d*w,/dz® == (P,6(z) — 1(2))/EF 2.1)
and an approximate equation of equilibrium of the matrix
Fwlort + (1/r)ewlor + 0wzt = 0, (2.2)
to which the following boundary conditions correspond:
' w,=0 (=0, w=w(r=a),w=0(0=0>), (2.3)

and all functions vanish at infinity. Here E and F are the modulus of elasticity of the material and the area of
the transverse cross section of the fiber; w(w,;) are the normal (along the z axis) displacements of the matrix

{tiber); 7(z) = 27raGwr[ r=q 18 the contact stress per unit length of the fiber, which must be determined.

After applying the Fourier cosine transformation with respect to the z coordinate to the equations and
boundary conditions, solving the ordinary differential equation obtained from (2.2), and calculating the inverse
transforms, we find

_ 031 €0s zs? 2.4
@ 7 sz(3)+glds’ @4

2naGo 260 I, (wbs) K, (was) — I (was) K, (mbs)
where g, = LF = Ea ; f(s )= 1 (mbs)K (was) +1, (a)as)K (mbs)

tions.

I(z), Ky(z) (k =0, 1) are modified Bessel func~-

For large values of the parameter s, which corresponds to small values of the z coordinate, f(s) ~ 1,
while the contact stress 7(z) is expressed as follows:

T(z) =

0
2Pg, 2P ¢
= S ° L (cos g, z ¢l g4z + sin g,z i g,2). (2.5)
0

The distribution of the contact stresses (2.5) corresponds to the solution of the problem of pulling a fiber out
of a semiinfinite matrix; as in the two dimensional problem, we have a logarithmic singularity at z = 0.

For small s, which corresponds to large values of the z coordinate,

f(s) = [ + x(s) " was In (b/a), %(s) = ((0as)*/2) In (2/ywbs),
v is Euler's constant. For small s, it is possible to neglect the function w(s) compared to unity, when
1(s) = was In (bla).
In this case, the stress (2.4) takes the form

oo

2p g° —
T(Z) = gt l*j‘ c—?—s = ds = Pogl*e al*z! g%* = = b L.
1 wa ln;l— Ead® ln‘bT

(2.6)

Equations (1.6) and (2.6) are identical, but the latter does not correspond to the distribution of contact
stresses in a discrete composite material.
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Thus, in the spatial problem, the solution obtained with the simplified approach, when it is assumed that
the fiber functions only under tension while the matrix functions only under shear, does not correspond to the
asymptotic behavior of the exact solution. For this reason, such a simplified approach can be viewed as justi-
fied only in the two-dimensional problem and, in addition, its range of applicability is limited.

Analogous results were obtained in examining the axisymmetrical problem of pulling a fiber out of a ma-
trix shaped like a finite cylinder (¢ = r = b, 0 =< z =< h), whose lateral surface (r =b) is fixed.

As in the two~-dimensional case, the form of the singular behavior of the contact stresses in the vicinity
of the singular line r = a, z = 0, is established based on the complete equations of the theory of elasticity. In
this case, the characteristic values A of the singular solution turn out to be the same as in the two~ and three-
dimensional problems, if the boundary conditions at the boundary of the fiber are identical.

3. The solutions obtained above for the contact stresses, which are each valid in their own zone of the
contact region, must transform smoothly into one another. The relation between the solutions of two neighbor-
ing zones can be established as follows. In one of the zones, the solution is known completely. In the solution
of the neighboring zone, a coefficient is unknown. The requirement that the solutions and their derivatives co-
incide permits finding the unknown coefficient and the coordinate of the point at which these two solutions are
joined.

As an example, we shall join the solutions (1.8), which includes solutions (1.7) and (1.9), with the singular
solution near the fiber—matrix joint at a free boundary (x = 0), when the stressed state of the fiber in the given
neighborhood is described by the equations of the two-dimensional stressed state. I this case,

(8) = 4;8 () = (2Py/nb)g.9(8),

_N'_ cos(uapTd) .z o A, 126 _ . " _
where @(§) = glnth Gonp ) + 2 a1 §=+iB= 3 8 ="gp ©=2. Requiring that the conditions 74 = 7y,

71 = 7} be satisfied, we obtain

2P .
A =LA A = 80 Ex)-
Here ¢, (the point at which the solutions are joined) is the root of the equation

Ap(§) — E¢'(E) = 0.

In particular, with A =—0.4 and 8 =1, for the values g, = 0.01, 0.1, 0.3, 0.5, 0.8, and 1.0, we find the fol-
lowing values of £y and Ai“, respectively: £, =0.026, 0.024, 0.02, 0.019, 0.017, 0.015; A;“ =0.006, 0.056,
0.157, 0.248, 0.368, 0.441. For B =2 and the same values of A and g,, we have £, = 0.053, 0.045, 0.037, 0.029,
0.022, 0.021; Af =0.008, 0.072, 0.191, 0.291, 0.418, 0.493.

The solutions are joined in an analogous manner in the case of axisymmetrical problems.
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STABILITY OF PLASTIC ELONGATION OF A BIMETALLIC SHEET

S. 8. Oding UDC 539.214:539.374

The extension of a sheet is limited by the magnitude of the critical strain at which local thinning of the
material begins with the formation of a neck. We solve the problem of the stability of plastic extengion of a bi-
metallic sheet under conditions of plane strain. The solution is constructed by using the theory of finite de-
formations of a rigid-plastic material.

1. We consider the plastic extension of a bimetallic sheet with a given law of variation of length. The
loss of stability in this case can be represented as a process of continuous change of equilibrium shapes.
Therefore the critical strain at which a neck is produced can be determined by the bifurcation method.

Since the loss of stability of deformation under consideration occurs during the plastic deformations de-
veloped, we neglect elastic deformations and assume a model of a rigid-plastic materials with isotropic hard-
ening.

(0

The flow curves of the materials of the layers of the bimetallic sheet crg) =0g (6g) and oéz) = o((}) (eg)
are assumed given. Here superscripts 1 and 2 denote quantities referring to the separate layers of the sheet;
o = [(8/ Z)Sijsu] 1/2 » stress intensity; sy; = 051 , components of the stress deviator; ojj, components of
the stress tensor; ¢ = {1/3)0 mn6mns- hy&rostatlc pressure, and eg, cumulative plastic defar mation.

The problem is to determine the strain ey, beyond which deformation occurs with the formation of a neck.

As the equations of state we take the equations of the deformation theory of plrasticity, written for finite
strains in the form

2
Sii=73

0’
'; €ijs (1.1)
where the ejj are the logarithmic strains; ee = [(2/ 3)eijeij]1/ 2 is the intensity of the logarithmic strains. Log-
arithmic straing are used in Egs. (1.1), since for large deformations the condition of incompressibility of the
material eijéij = 0 is compatible with Egs. (1.1) only for logarithmic strains.

Bifurcation in a state A means that in addition to unperturbed deformation in state A, perturbed deforma-
tion in a state B infinitely close to it is possible.

We introduce a Cartesian coordinate system in state A in such a way that for the same particles the co-
ordinates x; in state B and the coordinate x; in state A are related by the equation
z§ = i+ u, (1.2)
where uj is an additional infinitesimal displacement of a particle. Then
dzy = (83 -+ u; ;) dx;. (1.3)

From now oh subscripts after a comma denote differentiation with respect to the corresponding coor-
dinate x;
i

Retaining only first order infinitesimals in the determinant of system (1.3), we obtain the incompres-
sibility condition of the medium in the form

Voronezh. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 3, pp. 146-150, May~
June, 1982. Original article submitted March 23, 1981.
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